Problem 1.66

Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces $\overrightarrow{\boldsymbol{A}}$, $\overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{C}}$ shown in Fig. P1.66. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero.

Figure P1.66

Solution

Decompose the vectors into components along the x - and y - axes.

Draw the triangles corresponding to the vector magnitudes.

Use trigonometry to determine the vector components.

$$
\begin{array}{lll}
\cos 30^{\circ}=\frac{\left|B_{y}\right|}{|B|} & \cos 30^{\circ}=\frac{\left|A_{x}\right|}{|A|} & \cos 53^{\circ}=\frac{\left|C_{x}\right|}{|C|} \\
\sin 30^{\circ}=\frac{\left|B_{x}\right|}{|B|} & \sin 30^{\circ}=\frac{\left|A_{y}\right|}{|A|} & \sin 53^{\circ}=\frac{\left|C_{y}\right|}{|C|}
\end{array}
$$

Solve for the components.

$$
\begin{aligned}
& \left|A_{x}\right|=|A| \cos 30^{\circ}=100 \cos 30^{\circ} \approx 86.6 \mathrm{~N} \\
& \left|A_{y}\right|=|A| \sin 30^{\circ}=100 \sin 30^{\circ}=50.0 \mathrm{~N} \\
& \left|B_{x}\right|=|B| \sin 30^{\circ}=80 \sin 30^{\circ}=40.0 \mathrm{~N} \\
& \left|B_{y}\right|=|B| \cos 30^{\circ}=80 \cos 30^{\circ} \approx 69.3 \mathrm{~N} \\
& \left|C_{x}\right|=|C| \cos 53^{\circ}=40 \cos 53^{\circ} \approx 24.1 \mathrm{~N} \\
& \left|C_{y}\right|=|C| \sin 53^{\circ}=40 \sin 53^{\circ} \approx 31.9 \mathrm{~N}
\end{aligned}
$$

Since \mathbf{A}_{x} and \mathbf{A}_{y} point in the positive x - and y-directions, no minus signs are needed. Since \mathbf{B}_{x} points in the negative x-direction and \mathbf{B}_{y} points in the positive y-direction, a minus sign is needed in the x-component. Since \mathbf{C}_{x} and \mathbf{C}_{y} point in the negative x - and y-directions, minus signs are needed in both.

$$
\begin{aligned}
& A_{x} \approx 86.6 \mathrm{~N} \\
& A_{y}=50.0 \mathrm{~N} \\
& B_{x}=-40.0 \mathrm{~N} \\
& B_{y} \approx 69.3 \mathrm{~N} \\
& C_{x} \approx-24.1 \mathrm{~N} \\
& C_{y} \approx-31.9 \mathrm{~N}
\end{aligned}
$$

The vectors are then

$$
\begin{aligned}
& \mathbf{A}=\left\langle A_{x}, A_{y}\right\rangle \approx\langle 86.6,50.0\rangle \mathrm{N} \\
& \mathbf{B}=\left\langle B_{x}, B_{y}\right\rangle \approx\langle-40.0,69.3\rangle \mathrm{N} \\
& \mathbf{C}=\left\langle C_{x}, C_{y}\right\rangle \approx\langle-24.1,-31.9\rangle \mathrm{N} .
\end{aligned}
$$

Add them to get the resultant force vector.

$$
\begin{aligned}
\mathbf{R} & =\mathbf{A}+\mathbf{B}+\mathbf{C} \\
& \approx\langle 86.6,50.0\rangle \mathrm{N}+\langle-40.0,69.3\rangle \mathrm{N}+\langle-24.1,-31.9\rangle \mathrm{N} \\
& \approx\langle 86.6-40.0-24.1,50.0+69.3-31.9\rangle \mathrm{N} \\
& \approx\langle 22.5,87.4\rangle \mathrm{N}
\end{aligned}
$$

The fourth force needs to be

$$
\mathbf{F}=-\mathbf{R} \approx\langle-22.5,-87.4\rangle \mathrm{N}
$$

in order for the sum of the forces on the stone to be zero.

